We consider control of dynamical systems through the lens of competitive analysis. Most prior work in this area focuses on minimizing regret, that is, the loss relative to an ideal clairvoyant policy that has noncausal access to past, present, and future disturbances. Motivated by the observation that the optimal cost only provides coarse information about the ideal closed-loop behavior, we instead propose directly minimizing the tracking error relative to the optimal trajectories in hindsight, i.e., imitating the clairvoyant policy. By embracing a system level perspective, we present an efficient optimization-based approach for computing follow-the-clairvoyant (FTC) safe controllers. We prove that these attain minimal regret if no constraints are imposed on the noncausal benchmark. In addition, we present numerical experiments to show that our policy retains the hallmark of competitive algorithms of interpolating between classical $\mathcal{H}_2$ and $\mathcal{H}_\infty$ control laws - while consistently outperforming regret minimization methods in constrained scenarios thanks to the superior ability to chase the clairvoyant.
翻译:我们从竞争分析的角度来考虑对动态系统的控制。 这一领域的大多数先前工作都侧重于最大限度地减少遗憾, 也就是说, 与理想的光伏扬政策有关的损失, 该政策不因缘故而接触过去、现在和将来的动乱。 我们的动力是, 最佳成本只能提供关于理想的闭路行为粗糙的信息, 我们相反地提议直接将跟踪后视中最佳轨迹的错误降到最低程度, 即模仿光电政策。 通过采纳系统层面的观点, 我们提出了一个基于优化的高效方法, 用于计算后续跟踪( Clairvoyant) 安全控制器。 我们证明, 如果对非因果关系基准没有施加任何限制, 这些风险就会最小化。 此外, 我们提出数字实验, 以表明我们的政策保留了经典的 $mathcal {H ⁇ 2$和 $\mathcal{H ⁇ infty$ 控制法之间相互调控法竞争算法的标志。 同时, 由于追逐 Clairvoyant 的超强能力, 我们一直对限制情景的最小化方法表示遗憾。