In this paper, we present on-sensor neuromorphic vision hardware implementation of denoising spatial filter. The mean or median spatial filters with fixed window shape are known for its denoising ability, however, have the drawback of blurring the object edges. The effect of blurring increases with an increase in window size. To preserve the edge information, we propose an adaptive spatial filter that uses neuron's ability to detect similar pixels and calculates the mean. The analog input differences of neighborhood pixels are converted to the chain of pulses with voltage controlled oscillator and applied as neuron input. When the input pulses charge the neuron to equal or greater level than its threshold, the neuron will fire, and pixels are identified as similar. The sequence of the neuron's responses for pixels is stored in the serial-in-parallel-out shift register. The outputs of shift registers are used as input to the selector switches of an averaging circuit making this an adaptive mean operation resulting in an edge preserving mean filter. System level simulation of the hardware is conducted using 150 images from Caltech database with added Gaussian noise to test the robustness of edge-preserving and denoising ability of the proposed filter. Threshold values of the hardware neuron were adjusted so that the proposed edge-preserving spatial filter achieves optimal performance in terms of PSNR and MSE, and these results outperforms that of the conventional mean and median filters.
翻译:在本文中, 我们呈现在传感器或神经形态的神经变异视觉硬件上去掉空间过滤器。 具有固定窗口形状的平均或中位空间过滤器以其分解能力而为人所知。 但是, 其中位或中位空间过滤器以其分解能力而为人所知。 模糊增加的效果随着窗口大小的增加而出现。 为了保存边缘信息, 我们提议一个适应性空间过滤器, 使用神经元检测类似像素的能力, 并计算平均值。 将相邻像素的模拟输入差异转换成脉冲链, 由电压控制振荡器转换成神经脉冲链, 并作为神经输入形状的中位或中位空间过滤器输入。 当输入脉冲将神经神经元充电压到等于或大于其临界值的等值时, 神经神经元变色素将燃烧和像素被确认为相似。 神经元反应反应器反应的顺序的顺序将存储在序列中, 平均电路路路转换器的选取中, 使这一适应中位平均过滤器成为一个适应性中等过滤器。 。 硬件级的模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟模拟将使用150个硬值测试中,, 测试中精度测试值的硬度测试中, 和硬值的硬值将硬值调整到硬值的中, 。