Birds, bats and many insects can tuck their wings against their bodies at rest and deploy them to power flight. Whereas birds and bats use well-developed pectoral and wing muscles and tendons, how insects control these movements remains unclear, as mechanisms of wing deployment and retraction vary among insect species. Beetles (Coleoptera) display one of the most complex wing mechanisms. For example, in rhinoceros beetles, the wing deployment initiates by fully opening the elytra and partially releasing the hindwings from the abdomen. Subsequently, the beetle starts flapping, elevates the hindwings at the bases, and unfolds the wingtips in an origami-like fashion. Whilst the origami-like fold have been extensively explored, limited attention has been given to the hindwing base deployment and retraction, which are believed to be driven by thoracic muscles. Using high-speed cameras and robotic flapping-wing models, here we demonstrate that rhinoceros beetles can effortlessly elevate the hindwings to flight position without the need for muscular activity. We show that opening the elytra triggers a spring-like partial release of the hindwings from the body, allowing the clearance needed for subsequent flapping motion that brings the hindwings into flight position. The results also show that after flight, beetles can leverage the elytra to push the hindwings back into the resting position, further strengthening the hypothesis of a passive deployment mechanism. Finally, we validate the hypothesis with a flapping microrobot that passively deploys its wings for stable controlled flight and retracts them neatly upon landing, which offers a simple yet effective approach to the design of insect-like flying micromachines.
翻译:暂无翻译