We develop an end-to-end deep-neural-network-based algorithm for classifying animal behavior using accelerometry data on the embedded system of an artificial intelligence of things (AIoT) device installed in a wearable collar tag. The proposed algorithm jointly performs feature extraction and classification utilizing a set of infinite-impulse-response (IIR) and finite-impulse-response (FIR) filters together with a multilayer perceptron. The utilized IIR and FIR filters can be viewed as specific types of recurrent and convolutional neural network layers, respectively. We evaluate the performance of the proposed algorithm via two real-world datasets collected from grazing cattle. The results show that the proposed algorithm offers good intra- and inter-dataset classification accuracy and outperforms its closest contenders including two state-of-the-art convolutional-neural-network-based time-series classification algorithms, which are significantly more complex. We implement the proposed algorithm on the embedded system of the collar tag's AIoT device to perform in-situ classification of animal behavior. We achieve real-time in-situ behavior inference from accelerometry data without imposing any strain on the available computational, memory, or energy resources of the embedded system.
翻译:我们开发了一种终端到终端的深神经网络算法,利用安装在可磨损项圈标签中的人造物智能(AIoT)装置嵌入系统的进化测量数据,对动物行为进行分类。提议的算法使用一套无限免疫反应(IIR)和有限免疫反应(FIR)过滤器以及多层感应器,共同进行特征提取和分类。使用的IR和FIR过滤器可分别视为经常性和进化神经网络层的具体类型。我们通过从放牧牛群收集的两个真实世界数据集来评估拟议算法的性能。结果显示,拟议的算法提供了良好的内部和数据集分类准确性,并超越了最接近的竞争者,包括两个以电动神经网络为基础的状态时间序列算法,这些算法非常复杂。我们把拟议的算法放在项圈标签的自动神经网络设备嵌入系统中,以进行动物行为状况分类。我们从不进行实时的存储系统,或从任何能量系统进行实时的内嵌入式数据计算。