Graph convolutional networks (GCNs) have been the predominant methods in skeleton-based human action recognition, including human-human interaction recognition. However, when dealing with interaction sequences, current GCN-based methods simply split the two-person skeleton into two discrete graphs and perform graph convolution separately as done for single-person action classification. Such operations ignore rich interactive information and hinder effective spatial inter-body relationship modeling. To overcome the above shortcoming, we introduce a novel unified two-person graph to represent inter-body and intra-body correlations between joints. Experiments show accuracy improvements in recognizing both interactions and individual actions when utilizing the proposed two-person graph topology. In addition, We design several graph labeling strategies to supervise the model to learn discriminant spatial-temporal interactive features. Finally, we propose a two-person graph convolutional network (2P-GCN). Our model achieves state-of-the-art results on four benchmarks of three interaction datasets: SBU, interaction subsets of NTU-RGB+D and NTU-RGB+D 120.


翻译:然而,在处理互动序列时,目前以GCN为基础的方法只是将两个人的骨架分割成两个离散的图形,并像单人行动分类那样分别进行图变。这类操作忽视丰富的互动信息,妨碍有效的空间跨机构关系建模。为了克服上述缺陷,我们引入了一个新型的双人统一图,以代表各种联合体之间的体际和体内关联。实验显示,在使用拟议的双人图示表层学时,既承认互动,又承认个人行动的准确性都有提高。此外,我们设计了几个图形标签战略,以监督模型,学习相异的时空互动特征。最后,我们提议了一个双人图共变网络(2P-GCN)。我们的模型在三个互动数据集的4个基准上取得了最新的结果:SBU、NTU-RGB+D的互动分集和NTU-RGB+D120。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员