The extended Fisher--Kolmogorov (EFK) equation has been used to describe some phenomena in physical, material and biology systems. In this paper, we propose a full-rank splitting scheme and a rank-adaptive splitting approach for this equation. We first use a finite difference method to approximate the space derivatives. Then, the resulting semi-discrete system is split into two stiff linear parts and a nonstiff nonlinear part. This leads to our full-rank splitting scheme. The convergence and the maximum principle of the proposed scheme are proved rigorously. Based on the frame of the full-rank splitting scheme, a rank-adaptive splitting approach for obtaining a low-rank solution of the EFK equation. Numerical examples show that our methods are robust and accurate. They can also preserve energy dissipation and the discrete maximum principle.
翻译:延长的Fisher-Kolmogorov(EFK)等式被用来描述物理、物质和生物学系统中的某些现象。在本文中,我们建议对这一等式采用全面分解计划和等级调整分解方法。我们首先使用有限差别方法来估计空间衍生物。然后,由此形成的半分解系统分成两个硬线性线性部分和一个非固定的非线性部分。这导致我们的全面分解计划。拟议办法的趋同和最大原则得到了严格证明。根据全级分解计划的框架,一种等级调整分解方法,以获得EFK等式的低等级解决办法。数字实例表明,我们的方法是健全和准确的。它们还可以保护能源分散和离散最大原则。