Traditionally, 1D models based on scaling laws have been used to parameterized convective heat transfer rocks in the interior of terrestrial planets like Earth, Mars, Mercury and Venus to tackle the computational bottleneck of high-fidelity forward runs in 2D or 3D. However, these are limited in the amount of physics they can model (e.g. depth dependent material properties) and predict only mean quantities such as the mean mantle temperature. We recently showed that feedforward neural networks (FNN) trained using a large number of 2D simulations can overcome this limitation and reliably predict the evolution of entire 1D laterally-averaged temperature profile in time for complex models. We now extend that approach to predict the full 2D temperature field, which contains more information in the form of convection structures such as hot plumes and cold downwellings. Using a dataset of 10,525 two-dimensional simulations of the thermal evolution of the mantle of a Mars-like planet, we show that deep learning techniques can produce reliable parameterized surrogates (i.e. surrogates that predict state variables such as temperature based only on parameters) of the underlying partial differential equations. We first use convolutional autoencoders to compress the temperature fields by a factor of 142 and then use FNN and long-short term memory networks (LSTM) to predict the compressed fields. On average, the FNN predictions are 99.30% and the LSTM predictions are 99.22% accurate with respect to unseen simulations. Proper orthogonal decomposition (POD) of the LSTM and FNN predictions shows that despite a lower mean absolute relative accuracy, LSTMs capture the flow dynamics better than FNNs. When summed, the POD coefficients from FNN predictions and from LSTM predictions amount to 96.51% and 97.66% relative to the coefficients of the original simulations, respectively.
翻译:传统上,基于缩放定律的 1D 模型被用于在地球、火星、水星和金星等地球行星的内部内部对调调热岩质进行参数化分析,以解决2D 或 3D 中高纤维前方的计算瓶颈问题。然而,这些模型在物理模型(如深度依赖材料属性)中数量有限,只能预测中位体温度等平均数量。我们最近显示,使用大量 99D 模拟来训练的向神经网络(FNNN) 能够克服这一限制,并可靠地预测整个 1D 平级平均温度剖面的演变情况,以便应对复杂的模型。我们现在将这种方法扩大到预测整个 2D 温度场的计算瓶颈。它包含更多的信息,如热云和冷降水等。使用10,525 以恒定体的热进化模拟,我们表明,深度学习技术可以产生可靠的参数化(i.e. 假设首次预测了整个1D 平均温度剖面的全局性温度值,而仅使用低调的FNDR的内位的内位预测, 和FNUR值的内位的内位的内位的内位的内位数据流数据流数据流数据流, 也显示,使用了FD-ILDMER的直流数据流数据流的直流数据, 和FD-ral-ral-d-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-IL-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-