Variational Quantum Eigensolvers (VQEs) have recently attracted considerable attention. Yet, in practice, they still suffer from the efforts for estimating cost function gradients for large parameter sets or resource-demanding reinforcement strategies. Here, we therefore consider recent advances in weight-agnostic learning and propose a strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning. We investigate the use of NEAT-inspired algorithms which evaluate circuits via genetic competition and thus circumvent issues due to exceeding numbers of parameters. Our methods are tested both via simulation and on real quantum hardware and are used to solve the transverse Ising Hamiltonian and the Sherrington-Kirkpatrick spin model.
翻译:最近,变量量量子Eigensovers(VQEs)引起了相当大的注意,然而,实际上,它们仍然受到大参数组或资源需求强化战略的成本函数梯度估算努力的影响。因此,我们在这里考虑在重量-不可知性学习方面的最新进展,并提出一项战略,解决在寻找适当的电路结构与参数调控之间的权衡问题。我们调查使用NEAT启发的算法,通过基因竞争评估电路,从而绕过因参数数量过多而产生的问题。我们的方法通过模拟和真实量子硬件进行测试,并用于解决横跨的伊森密尔顿和谢尔顿-克尔克帕特里克旋转模型。