Self-supervised learning (SSL) has shown tremendous success in various speech-related downstream tasks, including Automatic Speech Recognition (ASR). The output embeddings of the SSL model are treated as powerful short-time representations of the speech signal. However, in the ASR task, the main objective is to get the correct sequence of acoustic units, characters, or byte-pair encodings (BPEs). Usually, encoder-decoder architecture works exceptionally well for a sequence-to-sequence task like ASR. Therefore, in this paper, we propose a new paradigm that exploits the power of a decoder during self-supervised learning. We use Hidden Unit BERT (HuBERT) SSL framework to compute the conventional masked prediction loss for the encoder. In addition, we have introduced a decoder in the SSL framework and proposed a target preparation strategy for the decoder. Finally, we use a multitask SSL setup wherein we jointly optimize both the encoder and decoder losses. We hypothesize that the presence of a decoder in the SSL model helps it learn an acoustic unit-based language model, which might improve the performance of an ASR downstream task. We compare our proposed SSL model with HuBERT and show up to 25% relative improvement in performance on ASR by finetuning on various LibriSpeech subsets.


翻译:自我监督的学习(SSL)在各种与语言相关的下游任务(包括自动语音识别(ASR))中表现出了巨大的成功。SSL模式的输出嵌入将被视为语音信号的强大短期表示。然而,在ASR的任务中,主要目标是获得音响单元、字符或字节编码的正确序列。通常,编码器-代码器架构在像ASR这样的顺序顺序顺序上运作非常顺利。因此,我们在本文件中提出一种新的模式,在自我监督学习期间利用解码器的能量。我们使用隐藏单位 BERT(HuBERT) SSL 框架来计算编码器的常规掩码预测损失。此外,我们在SLF框架中引入了解码器,并提出了解码器的目标准备战略。最后,我们使用了一个多塔斯克 SSL设置,我们共同优化了编码器和解码器损失。我们假设了在SLSLA系统(SL)下游系统(SL)下游系统(SL)系统(SL)系统(SL)下游系统(SL)下游)系统(SLB)下级(SLV)中,我们可能用SLOB(SLOB)下级(SLOB)系统(SB)系统(SLO(SL)系统(SB)的相对语言)的运行模式)的模型来学习。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员