Given a matrix $\mathbf{A} \in \mathbb{R}^{k \times n}$, a partitioning of $[k]$ into groups $S_1,\dots,S_m$, an outer norm $p$, and a collection of inner norms such that either $p \ge 1$ and $p_1,\dots,p_m \ge 2$ or $p_1=\dots=p_m=p \ge 1/\log n$, we prove that there is a sparse weight vector $\mathbf{\beta} \in \mathbb{R}^{m}$ such that $\sum_{i=1}^m \beta_i \cdot \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p \approx_{1\pm\varepsilon} \sum_{i=1}^m \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p$, where the number of nonzero entries of $\mathbf{\beta}$ is at most $O_{p,p_i}(\varepsilon^{-2}n^{\max(1,p/2)}(\log n)^2(\log(n/\varepsilon)))$. When $p_1\dots,p_m \ge 2$, this weight vector arises from an importance sampling procedure based on the block Lewis weights, a recently proposed generalization of Lewis weights. Additionally, we prove that there exist efficient algorithms to find the sparse weight vector $\mathbf{\beta}$ in several important regimes of $p$ and $p_1,\dots,p_m$. Our main technical contribution is a substantial generalization of the change-of-measure method that Bourgain, Lindenstrauss, and Milman used to obtain the analogous result when every group has size $1$. Our generalization allows one to analyze change of measures beyond those implied by D. Lewis's original construction, including the measure implied by the block Lewis weights and natural approximations of this measure.
翻译:暂无翻译