If no efficient proof shows that an unprovable arithmetic sentence '$x$ is Kolmogorov random' ('$x{\in}R$') lacks a length $t$ proof, an isomorphism associates for each $x$ impossible and hard tasks: ruling out any proof and length $t$ proofs respectively. This resembles Pudl\'ak's feasible incompleteness. This possible isomorphism implies widely-believed complexity theoretic conjectures hold -- in effect, translating theorems from noncomputability about proof speedup and average-case hardness directly to complexity. Formally, we conjecture: sentence "Peano arithmetic (PA) lacks any length $t$ proof of '$x{\in}R$'" lacks $t^{\mathcal{O}(1)}$ length proofs in any consistent extension $\mathcal{T}$ of PA if and only if $\mathcal{T}$ cannot prove '$x{\in}R$'. If so, tautologies encoding the sentence lack $t^{\mathcal{O}(1)}$ length proofs in any proof system $P$ for $x{\in}R$ sufficiently long (relative to the description of a program enumerating theorems of a theory $\mathcal{T}$ proving '$P$ is sound'). $R$'s density implies: $\texttt{TAUT}{\notin}\textbf{AvgP}$, Feige's hypothesis holds, and, a new conjecture, $P$'s nonoptimality has dense witnesses. If the isomorphism holds for any $\Pi^0$ sentence, $\textbf{PH}$ does not collapse, because the arithmetic hierarchy does not collapse.
翻译:如果没有有效的证据表明无法解释的算术句“x$ ” 是 Kolmogorov 随机 ” ($x=in}R$ ), 缺少一个长度的美元证明, 每个不可能的和艰巨的任务都存在不透明的联系: 排除任何证据和长度的美元证明。 这类似于 Pudl\'ak 可行的不完整性。 这个可能的不透明性意味着广泛相信的复杂性 判断力 -- 实际上, 将无法解读的证据速度和平均案件硬性等词从非可翻译性翻译为复杂 。 形式上, 我们猜测: “ peano 算术(PA) 缺乏任何长度的美元证明 'x_ 美元\ 美元=in} 美元” 。 这在任何一致的扩展 $\ mathcal{ t} 中, 只要$pal=pal=tal=tal ral=xnational_ral_ral_ral_ral_ral_l_l_l_l_l_l_l_l_l_lxxx_tal_xxxxxxx_xxxxxxxxxxxxxxxxxxxxxxxxxx_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx