This paper presents a Bayesian multilevel modeling approach for estimating well-level oil and gas production capacities across small geographic areas over multiple time periods. Focusing on a basin, which is a geologically and economically distinct drilling region, we model the production level of wells grouped by area and time, using priors as regulators of inferences. Our model accounts for area-level and time-level variations as well as well-level variations, incorporating lateral length, water usage, and sand usage. The Maidenhead Coordinate System is used to define uniform (small) geographic areas, many of which contain only a small number of wells in a given time period. The Bayesian small-area model is first built and checked, using data from the Bakken region, covering from 21 February 2012 to 12 June 2024. The model is expanded to accommodate temporal dynamics by introducing time-effect components, allowing for the analysis of production trends over times. We explore the impact of technological advancements by modeling water-sand intensity as a proxy for production efficiency. The Bayesian multilevel modeling approach provides a robust and flexible tool for modeling oil or/and gas production at area and time levels, informing the energy production prediction with uncertainties.
翻译:暂无翻译