The notion of statistical depth has been extensively studied in multivariate and functional data over the past few decades. In contrast, the depth on temporal point process is still under-explored. The problem is challenging because a point process has two types of randomness: 1) the number of events in a process, and 2) the distribution of these events. Recent studies proposed depths in a weighted product of two terms, describing the above two types of randomness, respectively. In this paper, we propose to unify these two randomnesses under one framework by a smoothing procedure. Basically, we transform the point process observations into functions using conventional kernel smoothing methods, and then adopt the well-known functional $h$-depth and its modified, center-based, version to describe the center-outward rank in the original data. To do so, we define a proper metric on the point processes with smoothed functions. We then propose an efficient algorithm to estimated the defined "center". We further explore the mathematical properties of the newly defined depths and study asymptotics. Simulation results show that the proposed depths can properly rank the point process observations. Finally, we demonstrate the new method in a classification task using a real neuronal spike train dataset.
翻译:在过去几十年中,统计深度的概念在多变量和功能性数据中得到了广泛的研究。相比之下,时间点过程的深度仍然在探索中。问题之所以具有挑战性,是因为点过程有两种随机性:(1) 一个过程的事件数量,(2) 这些事件的分布。最近的研究报告建议了两个参数的加权结果,分别描述了上述两种随机性。在本文件中,我们提议通过一个平滑程序将这两种随机性统一在一个框架中。基本上,我们用传统的内核平滑方法将点进程观测转换为函数,然后采用众所周知的功能性美元深度及其修改后的、以中心为基础的版本来描述原始数据的中外排等级。为了做到这一点,我们为点进程确定了一个适当的参数,同时描述了上述两种随机性。我们然后提出一个高效的算法来估计定义的“中心” 。我们进一步探讨新定义的深度和研究的随机性数学特性。模拟结果显示,拟议的深度能够正确排列点过程的顺序。最后,我们用一种新的方法来训练一个神经性分类。