In this article we develop a numerical scheme to deal with interfaces between touching numerical grids when solving Schr\"o{}dinger equation. In order to pass the information among grids we use the values of the fields only at the contact point between them. Surprisingly we obtain a convergent methods which is third order accurate with respect to the spatial resolution. In test cases, at the minimal resolution needed to describe correctly the waves, the error of this approximation is similar to that of a homogeneous (centered differences everywhere) scheme with three points stencil, that is a sixth order finite difference operator. The semi-discrete approximation preserves the norm and uses standard finite difference operators satisfying summation by parts. For the time integrator we use a semi-implicit IMEX Runge Kutta method.
翻译:在此篇文章中, 我们开发了一个数字方案, 处理在解决 Schr\" o\\\\ dinger 等式时触摸数字网格之间的界面。 为了在网格之间传递信息, 我们只在它们之间的联络点使用字段的值。 令人惊讶的是, 我们获得了一个对空间分辨率来说准确的第三顺序的趋同方法。 在测试案例中, 在最起码的分辨率上, 要正确描述波, 这个近距离的误差类似于一个同质( 中心差) 方案, 有三个点的 Stencil, 也就是第六个顺序的有限差数操作员。 半分近似保存了标准, 并使用标准的有限差运算符, 满足了部分的和数。 在测试案例中, 我们使用半不透明 ImEX Runge Kutta 方法。