We present a real-time multivariate anomaly detection algorithm for data streams based on the Probabilistic Exponentially Weighted Moving Average (PEWMA). Our formulation is resilient to (abrupt transient, abrupt distributional, and gradual distributional) shifts in the data. The novel anomaly detection routines utilize an incremental online algorithm to handle streams. Furthermore, our proposed anomaly detection algorithm works in an unsupervised manner eliminating the need for labeled examples. Our algorithm performs well and is resilient in the face of concept drifts.
翻译:我们根据概率估计加权平均移动率(PEWMA)为数据流提供了一个实时的多变量异常探测算法。我们的配方具有适应数据变化的弹性(快速、突然分布和逐步分布 ) 。 新的异常探测程序使用一种递增的在线算法处理流。 此外,我们提议的异常探测算法以不受监督的方式发挥作用,消除了对标签示例的需求。我们的算法运行良好,在概念漂移面前具有弹性。