We consider the numerical solution of the discrete multi-marginal optimal transport (MOT) by means of the Sinkhorn algorithm. In general, the Sinkhorn algorithm suffers from the curse of dimensionality with respect to the number of marginals. If the MOT cost function decouples according to a tree or circle, its complexity is linear in the number of marginal measures. In this case, we speed up the convolution with the radial kernel required in the Sinkhorn algorithm by non-uniform fast Fourier methods. Each step of the proposed accelerated Sinkhorn algorithm with a tree-structured cost function has a complexity of $\mathcal O(K N)$ instead of the classical $\mathcal O(K N^2)$ for straightforward matrix-vector operations, where $K$ is the number of marginals and each marginal measure is supported on at most $N$ points. In case of a circle-structured cost function, the complexity improves from $\mathcal O(K N^3)$ to $\mathcal O(K N^2)$. This is confirmed by numerical experiments.
翻译:我们用Sinkhorn算法来考虑离散多边最佳运输(MOT)的数字解决办法。 一般来说, Sinkhorn算法在边缘数量方面受到维度诅咒。 如果MOT成本函数根据树或圆形进行分解, 其复杂性在边际测量数中是线性的。 在这种情况下, 我们用非单形快速Fourier法加快Sinkhorn算法所要求的弧内内核的演进。 提议的加速Sinkhorn算法中带有树形成本函数的每一步,其复杂性为$\mathcal O(K N), 而不是经典的$\mathcal O(K N2), 用于直观矩阵- 矢量操作的美元(KN2), 美元是边际数, 每项边际测量法最多以美元支持。 如果使用圆形结构成本函数, 复杂性从$\mathcal O(K n3) 提高到$\ mathcal O(K N2) 。 数字实验证实了这一点。