This paper provides a numerical framework for computing the achievable rate region of memoryless multiple access channel (MAC) with a continuous alphabet from data. In particular, we use recent results on variational lower bounds on mutual information and KL-divergence to compute the boundaries of the rate region of MAC using a set of functions parameterized by neural networks. Our method relies on a variational lower bound on KL-divergence and an upper bound on KL-divergence based on the f-divergence inequalities. Unlike previous work, which computes an estimate on mutual information, which is neither a lower nor an upper bound, our method estimates a lower bound on mutual information. Our numerical results show that the proposed method provides tighter estimates compared to the MINE-based estimator at large SNRs while being computationally more efficient. Finally, we apply the proposed method to the optical intensity MAC and obtain a new achievable rate boundary tighter than prior works.
翻译:本文为计算无记忆多存通道(MAC)的可实现率区域提供了一个数字框架,并有数据连续字母。 特别是,我们使用最近关于互信和KL-divegence的互换下限和KL-divegence的变量下限结果,使用神经网络的一组参数来计算MAC费率区域的边界。 我们的方法依靠基于F-diverence不平等的KL-diverence和KL-diverence的变量下限。 与以前的工作不同,以前的工作是计算对相互信息的估算,既不低,也不是上限,我们的方法估计对相互信息的限制较低。 我们的数字结果显示,在计算效率更高的同时,拟议方法提供了比基于MIRE的大型SRRIS的测算器更严格的估计数。 最后,我们将拟议方法应用于光强度MACC,并获得比先前工作更紧的新的可实现率边界。