We research relations between optimal transport theory (OTT) and approximate Bayesian computation (ABC) possibly connected to relevant metrics defined on probability measures. Those of ABC are computational methods based on Bayesian statistics and applicable to a given generative model to estimate its a posteriori distribution in case the likelihood function is intractable. The idea is therefore to simulate sets of synthetic data from the model with respect to assigned parameters and, rather than comparing prospects of these data with the corresponding observed values as typically ABC requires, to employ just a distance between a chosen distribution associated to the synthetic data and another of the observed values. Our focus lies in theoretical and methodological aspects, although there would exist a remarkable part of algorithmic implementation, and more precisely issues regarding mathematical foundation and asymptotic properties are carefully analysed, inspired by an in-depth study of what is then our main bibliographic reference, that is Bernton et al. (2019), carrying out what follows: a rigorous formulation of the set-up for the ABC rejection algorithm, also to regain a transparent and general result of convergence as the ABC threshold goes to zero whereas the number n of samples from the prior stays fixed; general technical proposals about distances leaning on OTT; weak assumptions which lead to lower bounds for small values of threshold and as n goes to infinity, ultimately showing a reasonable possibility of lack of concentration which is contrary to what is proposed in Bernton et al. (2019) itself.


翻译:我们研究最佳运输理论(OTT)和近似巴伊西亚计算(ABC)之间的关系,它们可能与根据概率计量确定的相关指标相联系。ABC是基于巴伊西亚统计的计算方法,适用于特定基因模型,以便在可能性功能难以确定的情况下,估计其事后分布;因此,我们的想法是模拟模型中与指定参数有关的成套合成数据,而不是将这些数据的前景与ABC通常要求的相应观测值相比较,仅仅使用与合成数据相关的选定分布与观察到的值的另一种值之间的距离。我们的重点是理论和方法方面,尽管在算法执行中将存在显著的部分,并且根据对当时我们主要文献参考的Bernton等人(2019年)的深入研究,对数学基础和无症状特性的更精确问题进行仔细分析。我们的想法是,从模型中模拟出一套与ABC拒绝算法的严格拟订,同时从一个透明和一般的趋同结果,因为ABC阈值上升到零,而从先前的标本数中将有一个显著的部分,而从数学基础和无症状特性特性特性特性的更精确性的问题,最终将提出一个较弱的技术建议。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Higher Order Targeted Maximum Likelihood Estimation
Arxiv
0+阅读 · 2021年6月23日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员