Over-approximating (OX) program logics, such as separation logic (SL), are used for verifying properties of heap-manipulating programs: all terminating behaviour is characterised, but established results and errors need not be reachable. OX function specifications are thus incompatible with true bug-finding supported by symbolic execution tools such as Pulse and Pulse-X. In contrast, under-approximating (UX) program logics, such as incorrectness separation logic, are used to find true results and bugs: established results and errors are reachable, but there is no mechanism for understanding if all terminating behaviour has been characterised. We introduce exact separation logic (ESL), which provides fully-verified function specifications compatible with both OX verification and UX true bug-funding: all terminating behaviour is characterised, and all established results and errors are reachable. We prove soundness for ESL with mutually recursive functions, demonstrating, for the first time, function compositionality for a UX logic. We show that UX program logics require subtle definitions of internal and external function specifications compared with the familiar definitions of OX logics. We investigate the expressivity of ESL and, for the first time, explore the role of abstraction in UX reasoning by verifying abstract ESL specifications of various data-structure algorithms. In doing so, we highlight the difference between abstraction (hiding information) and over-approximation (losing information). Our findings demonstrate that, expectedly, abstraction cannot be used as freely in UX logics as in OX logics, but also that it should be feasible to use ESL to provide tractable function specifications for self-contained, critical code, which would then be used for both verification and true bug-finding.


翻译:超超常( OX) 程序逻辑, 例如 偏差( SL), 用于核查 堆积管理程序 的特性 : 所有终止行为都有特征, 但是没有机制可以理解 。 我们引入了精确的分离逻辑( ESL), 它提供了与 OX 核查和 UX 真正错误供资兼容的完全核查功能规格: 所有终止行为都具有特征, 并且所有既定结果和错误都可以实现。 相反, 偏差( UX) 程序逻辑, 例如不正确的分离逻辑, 被用来寻找真实的结果和错误: 已经确立的结果和错误是可以实现的, 但是如果所有终止行为都有特征的话, 就没有机制可以理解 。 我们引入精确的分离逻辑( ESL ), 提供与 OX 核查和 UX 真正错误供资的完全核查功能: 所有的终止行为都具有特征, 并且所有既定结果和错误都可以实现。 我们证明 ESL 具有相互递解的功能( ), 首次显示UX 逻辑的功能是可行的 。 我们的逻辑 。 我们的逻辑逻辑需要精确定义 和外部的, 和外部功能 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月29日
Arxiv
0+阅读 · 2023年4月27日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员