In this work we adapt classical residual-based stabilization techniques to the spline collocation setting. Inspired by the Streamline-Upwind-Petrov-Galerkin and Pressure-Stabilizing-Petrov-Galerkin methods, our stabilized collocation schemes address spurious oscillations that can arise from advection and pressure instabilities. Numerical examples for the advection-diffusion equation, Stokes equations, and incompressible Navier-Stokes equations show the effectiveness of the proposed stabilized schemes while maintaining the high-order convergence rates and accuracy of standard isogeometric collocation on smooth problems.
翻译:暂无翻译