A decoding algorithm for polar (sub)codes with binary $2^t\times 2^t$ polarization kernels is described. The proposed approach exploits the linear relationship of the considered kernels and the Arikan matrix. This relationship enables one to compute the kernel input symbol log-likelihood ratio (LLR) by computing path scores of several paths in Arikan successive cancellation (SC) decoding. Further complexity reduction is achieved by identification and reusing of common subexpressions arising in this computation. The proposed algorithm is applied to kernels of size $16$ and $32$ with improved polarization properties. It enables polar (sub)codes with the considered kernels to provide better performance and lower decoding complexity compared with polar (sub)codes with Arikan kernel.
翻译:描述一个包含二进制 2 ⁇ t\time 2 ⁇ t$两极分化内核的解码算法。 提议的方法利用了被考虑的内核和Arikan 矩阵的线性关系。 这种关系使一个人能够通过计算Arikan 连续取消( SC) 中若干路径的路径分数来计算内核输入符号日志相似比( LLLR) 。 通过识别和重新使用本计算中产生的共同子表达法,可以进一步降低复杂性。 提议的算法适用于规模为 16 美元 和 32 美元的内核, 并改进了两极分化特性。 它使得与被考虑的内核的极性编码能够提供更好的性能和较低的解码复杂性, 与Arikan 内核的极性( 子) 编码相比。