Artificial Intelligence (AI) and, in particular, Machine Learning (ML) have emerged to be utilized in various applications due to their capability to learn how to solve complex problems. Over the last decade, rapid advances in ML have presented Deep Neural Networks (DNNs) consisting of a large number of neurons and layers. DNN Hardware Accelerators (DHAs) are leveraged to deploy DNNs in the target applications. Safety-critical applications, where hardware faults/errors would result in catastrophic consequences, also benefit from DHAs. Therefore, the reliability of DNNs is an essential subject of research. In recent years, several studies have been published accordingly to assess the reliability of DNNs. In this regard, various reliability assessment methods have been proposed on a variety of platforms and applications. Hence, there is a need to summarize the state of the art to identify the gaps in the study of the reliability of DNNs. In this work, we conduct a Systematic Literature Review (SLR) on the reliability assessment methods of DNNs to collect relevant research works as much as possible, present a categorization of them, and address the open challenges. Through this SLR, three kinds of methods for reliability assessment of DNNs are identified including Fault Injection (FI), Analytical, and Hybrid methods. Since the majority of works assess the DNN reliability by FI, we characterize different approaches and platforms of the FI method comprehensively. Moreover, Analytical and Hybrid methods are propounded. Thus, different reliability assessment methods for DNNs have been elaborated on their conducted DNN platforms and reliability evaluation metrics. Finally, we highlight the advantages and disadvantages of the identified methods and address the open challenges in the research area.
翻译:暂无翻译