The world is moving into a new era with the deployment of 5G communication infrastructure. Many new developments are deployed centred around this technology. One such advancement is 5G Vehicle to Everything communication. This technology can be used for applications such as driverless delivery of goods, immediate response to emergencies and improving traffic efficiency. The concept of Intelligent Transport Systems (ITS) is built around this system which is completely autonomous. This paper studies the Distributed Denial of Service (DDoS) attack carried out over a 5G network and analyses security attacks, particularly the DDoS attack. The aim is to implement a machine learning model capable of classifying different types of DDoS attacks and predicting the quality of 5G latency. The initial steps of implementation involved the synthetic addition of 5G parameters into the dataset. Subsequently, the data was label encoded, and minority classes were oversampled to match the other classes. Finally, the data was split as training and testing, and machine learning models were applied. Although the paper resulted in a model that predicted DDoS attacks, the dataset acquired significantly lacked 5G related information. Furthermore, the 5G classification model needed more modification. The research was based on largely quantitative research methods in a simulated environment. Hence, the biggest limitation of this research has been the lack of resources for data collection and sole reliance on online data sets. Ideally, a Vehicle to Everything (V2X) project would greatly benefit from an autonomous 5G enabled vehicle connected to a mobile edge cloud. However, this project was conducted solely online on a single PC which further limits the outcomes. Although the model underperformed, this paper can be used as a framework for future research in Intelligent Transport System development.


翻译:随着5G通信基础设施的部署,世界正在进入一个新时代。许多新的发展都围绕这一技术进行。这种进步之一是5G的“一切通信的5G车”。这种技术可用于各种应用,如无司机货物的交付、对紧急情况的即时反应和提高交通效率。智能运输系统(ITS)的概念是围绕这个完全自主的系统构建的。本文研究的是5G网络上分散拒绝服务(DDoS)的攻击,并分析安全攻击,特别是DDoS攻击。其目的是执行一个机器学习模型,能够对DDoS攻击的不同类型进行分类,并预测5G拉特的质量。这一技术的推进可以用于在数据集中合成增加5G参数。随后,数据被标为编码,少数类被过多地标为与其他类相匹配。最后,数据由于培训和测试,数据被应用了机器学习模型,数据被分割。虽然对DDoS攻击作了预测,但数据集却大大缺乏5G相关的信息。此外,5G的在线数据采集模型在很大程度上用于了内部的在线数据依赖性研究。 5G的标准化模型用于了一种最先进的数据采集模型,因此,因此需要进行一个标准化的标准化的标准化的标准化的标准化的标准化数据采集。一个标准化的标准化的模型,一个标准化数据采集。一个标准化的标准化的模型用于了一种单一的模型的模型,一个标准化的模型用于了一种标准化的模型的模型,一个基础的模型的模型,一个标准化的模型的模型,一个基础的模型用于了一种模型用于了一种最先进的数据采集的模型。 。一个基础的模型是一种标准化的模型,一个基础的模型,一个基础的模型,一个基础的模型,一个基础的模型的模型,一个基础的模型用于了一种基础的模型的模型的模型的模型的模型用于了。

0
下载
关闭预览

相关内容

《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
52+阅读 · 2022年3月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
23+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
52+阅读 · 2022年3月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
23+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员