We propose Point2Cyl, a supervised network transforming a raw 3D point cloud to a set of extrusion cylinders. Reverse engineering from a raw geometry to a CAD model is an essential task to enable manipulation of the 3D data in shape editing software and thus expand their usages in many downstream applications. Particularly, the form of CAD models having a sequence of extrusion cylinders -- a 2D sketch plus an extrusion axis and range -- and their boolean combinations is not only widely used in the CAD community/software but also has great expressivity of shapes, compared to having limited types of primitives (e.g., planes, spheres, and cylinders). In this work, we introduce a neural network that solves the extrusion cylinder decomposition problem in a geometry-grounded way by first learning underlying geometric proxies. Precisely, our approach first predicts per-point segmentation, base/barrel labels and normals, then estimates for the underlying extrusion parameters in differentiable and closed-form formulations. Our experiments show that our approach demonstrates the best performance on two recent CAD datasets, Fusion Gallery and DeepCAD, and we further showcase our approach on reverse engineering and editing.
翻译:我们提议Point2Cyl, 这是一种监管的网络, 将原始的 3D 点云变成一组外流圆柱体。 逆向工程从原始几何学到 CAD 模型是一项基本任务, 能够将3D 数据以形状编辑软件进行操纵, 从而在很多下游应用中扩大其用途。 特别是, CAD 模型的形式, 其外流圆圆柱形序列为2D 草图, 外向轴和射程, 它们的布林组合不仅在 CAD 群落/软件中广泛使用, 而且与有限的原始( 如, 平面、 球和 圆柱体) 相比, 也具有巨大的外形表达性。 在这项工作中, 我们引入了一个神经网络, 通过首先学习基本的几何轴轴轴轴轴轴, 从而解决外形圆柱形体分解问题。 确切地, 我们的方法首先预测了每点分解、 基/ 柱形 标签和正常, 然后估计不同和封闭式配方的外形基本外形参数参数参数参数参数参数参数, 。 我们的实验展示了我们的方法展示了最新的、 CADAR和深室、 和深室、 CAD 和深室、 和深室、 。