We present a generic way to hybridize physical and data-driven methods for predicting physicochemical properties. The approach `distills' the physical method's predictions into a prior model and combines it with sparse experimental data using Bayesian inference. We apply the new approach to predict activity coefficients at infinite dilution and obtain significant improvements compared to the data-driven and physical baselines and established ensemble methods from the machine learning literature.
翻译:我们提出了一种将物理和数据驱动的物理和物理化学特性预测方法混合在一起的通用方法,将物理方法的预测“蒸馏”方法纳入以前的模型,并使用贝叶斯推论将其与稀少的实验数据结合起来,我们采用新的方法预测无限稀释的活动系数,与数据驱动和实际基线相比,取得重大改进,并从机器学习文献中确定共同方法。