Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits by using state-of-the-art quantum compressive sensing (CS) methods. In this article, QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$ qubits in a specific measurement set-up, i.e., denoted as $K$-sparse, is achieved without any initial knowledge and with quantum polynomial-time complexity of resources based on the assumption of the existence of polynomial size quantum circuits for implementing exponentially large powers of a specially designed unitary operator. The algorithm includes $\mathcal{O}(2 \, / \, \vert c_{k}\vert^2)$ repetitions of conventional phase estimation algorithm depending on the probability $\vert c_{k}\vert^2$ of the least possible basis state in the superposition and $\mathcal{O}(d \, K \,(log K)^c)$ measurement settings with conventional quantum CS algorithms independent from the number of qubits while dependent on $K$ for constant $c$ and $d$. Quantum phase estimation algorithm is exploited based on the favorable eigenstructure of the designed operator to represent any pure state as a superposition of eigenvectors. Linear optical set-up is presented for realizing the special unitary operator which includes beam splitters and phase shifters where propagation paths of single photon are tracked with which-path-detectors. Quantum circuit implementation is provided by using only CNOT, phase shifter and $- \pi \, / \, 2$ rotation gates around X-axis in Bloch sphere, i.e., $R_{X}(- \pi \, / \, 2)$, allowing to be realized in NISQ devices. Open problems are discussed regarding the existence of the unitary operator and its practical circuit implementation.


翻译:用于重建纯状态的量子状态映射( QST), 需要使用最先进的量子压缩( CS) 方法, 以Qbits 数量快速增加资源和测量量。 文章中, QST 重建任何纯状态, 由美元的不同计算基值的叠加值构成, 即, 以美元为单位, 以美元为单位, 以重建纯度为单位, 以重建纯度为单位, 以建立量子数的量子数多位/ 时间复杂性。 QST 假设存在多米规模的量子电路, 以实施一个专门设计的单一操作器的超大能力。 算法包括 $\ mathcal{O} (2\, /\\\\, \, oftc) 以美元为单位, 的量级估算算法的重度值值值值值值值值值值值值。 在超位中, Qcrctal- Q- 的量位值位数是使用直径基值的直径解算法, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
82+阅读 · 2020年12月5日
专知会员服务
52+阅读 · 2020年9月7日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
98+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2022年1月14日
On the Estimation Bias in Double Q-Learning
Arxiv
0+阅读 · 2022年1月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员