In this paper, we introduce a new framework for unsupervised deep homography estimation. Our contributions are 3 folds. First, unlike previous methods that regress 4 offsets for a homography, we propose a homography flow representation, which can be estimated by a weighted sum of 8 pre-defined homography flow bases. Second, considering a homography contains 8 Degree-of-Freedoms (DOFs) that is much less than the rank of the network features, we propose a Low Rank Representation (LRR) block that reduces the feature rank, so that features corresponding to the dominant motions are retained while others are rejected. Last, we propose a Feature Identity Loss (FIL) to enforce the learned image feature warp-equivariant, meaning that the result should be identical if the order of warp operation and feature extraction is swapped. With this constraint, the unsupervised optimization is achieved more effectively and more stable features are learned. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the state-of-the-art on the homography benchmark datasets both qualitatively and quantitatively. Code is available at https://github.com/megvii-research/BasesHomo.
翻译:在本文中,我们引入了不受监督的深同系估计的新框架。 我们的贡献是 3 折 。 首先, 与以前的方法不同, 后退 4 抵消同系, 我们提议了一种同系流代表, 可以通过8个预先定义的同系流动基数加权和8个加权来估计。 其次, 将同系包含8 度自由( DOF), 远低于网络功能的级别, 我们提议了一个低级别代表区块, 降低特性级别, 以便保留与主导动作相对应的特征, 而其他功能则被拒绝。 最后, 我们提议了一种特性损失( FIL), 以强制执行所学的图像特征为 warp- equivariant, 意思是如果扭曲了扭曲操作和特征提取的顺序, 则结果应该是相同的。 有了这种限制, 不受监督的优化能够更有效地实现, 并且学习了更稳定的特性。 我们进行了广泛的实验, 以证明所有新提议的组成部分的有效性, 并且结果显示我们的方法超过了 ALs- art at the state-art on the attigraphymagraphyal- basimal- basgelsmabal/ bascolsal.