We develop a probabilistic control algorithm, $\texttt{GTLProCo}$, for swarms of agents with heterogeneous dynamics and objectives, subject to high-level task specifications. The resulting algorithm not only achieves decentralized control of the swarm but also significantly improves scalability over state-of-the-art existing algorithms. Specifically, we study a setting in which the agents move along the nodes of a graph, and the high-level task specifications for the swarm are expressed in a recently-proposed language called graph temporal logic (GTL). By constraining the distribution of the swarm over the nodes of the graph, GTL can specify a wide range of properties, including safety, progress, and response. $\texttt{GTLProCo}$, agnostic to the number of agents comprising the swarm, controls the density distribution of the swarm in a decentralized and probabilistic manner. To this end, it synthesizes a time-varying Markov chain modeling the time evolution of the density distribution under the GTL constraints. We first identify a subset of GTL, namely reach-avoid specifications, for which we can reduce the synthesis of such a Markov chain to either linear or semi-definite programs. Then, in the general case, we formulate the synthesis of the Markov chain as a mixed-integer nonlinear program (MINLP). We exploit the structure of the problem to provide an efficient sequential mixed-integer linear programming scheme with trust regions to solve the MINLP. We empirically demonstrate that our sequential scheme is at least three orders of magnitude faster than off-the-shelf MINLP solvers and illustrate the effectiveness of $\texttt{GTLProCo}$ in several swarm scenarios.


翻译:我们开发了一种概率控制算法, $\ textt{ GTLProCo} $\ ptrent{ GTL}, 用于具有不同动态和目标的代理商群群, 但须服从高层次任务规格。 由此产生的算法不仅能实现群体的分散控制, 而且还能显著改善现有最先进的算法的伸缩性。 具体地说, 我们研究一种环境, 使代理商沿着图表节点移动, 以及群体的高级任务规格, 以最近提出的语言表达, 称为图形时间流时间逻辑( GTL) 。 通过限制图表节点的群群分布, GTL 能够指定一系列广泛的属性, 包括安全性、 进步和反应。 $ltrenttt{ GTLProco} $, 与构成群落的代理商数量, 以分散性和不稳定性的方式控制着暖气的密度分布。 为此, 它综合了一个时间流的Mark- snent marve Mark 链 模型, 在GTL 节点上, 我们以最低水平的平流的立算程序 展示了一种直流 。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
专知会员服务
50+阅读 · 2021年6月30日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Novel Compaction Approach for SBST Test Programs
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年6月30日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员