ALNS is a popular metaheuristic with renowned efficiency in solving combinatorial optimisation problems. However, despite 16 years of intensive research into ALNS, whether the embedded adaptive layer can efficiently select operators to improve the incumbent remains an open question. In this work, we formulate the choice of operators as a Markov Decision Process, and propose a practical approach based on Deep Reinforcement Learning and Graph Neural Networks. The results show that our proposed method achieves better performance than the classic ALNS adaptive layer due to the choice of operator being conditioned on the current solution. We also discuss important considerations such as the size of the operator portfolio and the impact of the choice of operator scales. Notably, our approach can also save significant time and labour costs for handcrafting problem-specific operator portfolios.
翻译:ALNS是一个著名的计量经济学家,在解决组合优化问题方面有着著名的效率。然而,尽管对ALNS进行了16年的密集研究,但嵌入的适应层能否有效地选择操作者来改进现有操作者仍然是一个未决问题。 在这项工作中,我们把操作者的选择设计成一个Markov决策程序,并基于深强化学习和图形神经网络提出一个切实可行的方法。结果显示,由于对操作者的选择以目前的解决方案为条件,我们提出的方法比传统的ALNS适应层取得了更好的绩效。我们还讨论了操作者组合的规模和操作者规模选择的影响等重要考虑因素。值得注意的是,我们的方法还可以节省手工制作特定问题的操作者组合所需的大量时间和人工成本。</s>