Approximate combinatorial optimisation has emerged as one of the most promising application areas for quantum computers, particularly those in the near term. In this work, we focus on the quantum approximate optimisation algorithm (QAOA) for solving the MaxCut problem. Specifically, we address two problems in the QAOA, how to initialise the algorithm, and how to subsequently train the parameters to find an optimal solution. For the former, we propose graph neural networks (GNNs) as a warm-starting technique for QAOA. We demonstrate that merging GNNs with QAOA can outperform both approaches individually. Furthermore, we demonstrate how graph neural networks enables warm-start generalisation across not only graph instances, but also to increasing graph sizes, a feature not straightforwardly available to other warm-starting methods. For training the QAOA, we test several optimisers for the MaxCut problem up to 16 qubits and benchmark against vanilla gradient descent. These include quantum aware/agnostic and machine learning based/neural optimisers. Examples of the latter include reinforcement and meta-learning. With the incorporation of these initialisation and optimisation toolkits, we demonstrate how the optimisation problems can be solved using QAOA in an end-to-end differentiable pipeline.
翻译:近似组合式优化已成为量子计算机最有希望的应用领域之一,特别是在近期内。在这项工作中,我们侧重于解决 MaxCut 问题的量子近似优化算法(QAOA) 。具体地说,我们解决了QAOA中两个问题,即如何启动算法,以及随后如何培训参数以找到最佳解决方案。对于前者,我们提议将图形神经网络(GNN)作为QAOA的热启动技术。我们证明,将GNNN与QAOA合并,可以单独地超越两种方法。此外,我们展示图形神经网络不仅能够让图表实例的热启动普及,而且能够增加图形大小,这是其他热启动方法无法直接获得的一个特征。对于QAOA来说,我们测试了几个关于最大气候网络问题的最优化者,最高可达16公尺,并比可测量Vanilla 梯度的基底位。我们展示了量感知/氮学和机器学习基础/神经选择者。此外,我们展示了图形网络网络的升级和新化方法的范例,包括了我们如何解决了这些工具包的升级。