Ensuring the robustness of code generated by large language models (LLMs) is crucial for real-world reliability. However, existing evaluations predominantly focus on correctness, often neglecting key robustness concerns such as missing input validation and insufficient error handling. In this paper, we present the first empirical study on the robustness of LLM-generated code. We introduce novel robustness metrics and analyze four state-of-the-art code LLMs, revealing that, on average, 43.1% of their generated code is less robust than human-written counterparts. Notably, over 90% of robustness deficiencies stem from missing conditional checks, with 70% of these omissions occurring in the first line of code. Additionally, in 69% of cases where a conditional statement is necessary but absent, the "if" token still ranks third or higher in the model's predicted token probabilities, indicating an implicit recognition of control structures. Building on these findings, we propose RobGen, a framework designed to enhance code robustness without requiring model retraining. RobGen leverages two model-agnostic techniques: RobGen-Adj, which dynamically adjusts token probabilities during decoding to encourage the inclusion of control structures, and RobGen-Ins, which improves generated code by inserting missing conditionals after generation. Experimental results demonstrate that RobGen reduces the proportion of less robust model-generated code by 20.0%, significantly enhancing code reliability across diverse tasks. As a lightweight and adaptable solution, RobGen effectively mitigates robustness challenges in LLM-generated code. All code and data are available at https://github.com/SYSUSELab/RobGen.
翻译:暂无翻译