The recent low-rank prior based models solve the tensor completion problem efficiently. However, these models fail to exploit the local patterns of tensors, which compromises the performance of tensor completion. In this paper, we propose a novel hierarchical prior regularized matrix factorization model for tensor completion. This model hierarchically incorporates the low-rank prior, total variation prior, and sparse coding prior into a matrix factorization, simultaneously characterizing both the global low-rank property and the local smoothness of tensors. For solving the proposed model, we use the alternating direction method of multipliers to establish our algorithm. Besides, the complexity and convergence are investigated to further validate the algorithm effectiveness. The proposed scheme is then evaluated through various data sets. Experiment results verify that, the proposed method outperforms several state-of-the-art approaches.


翻译:最近的低级前制模型有效解决了高压完成问题。 但是, 这些模型未能利用当地高压模式, 从而影响高压完成的性能。 在本文中, 我们提出一种新的先定等级的先定矩阵因子化模型, 供高压完成。 这个模型在等级上包含了先定等级的低级模型、 之前完全变异模型和之前稀疏的编码, 将其纳入矩阵化, 同时将全球低级属性和地方均匀化模型。 为了解决拟议的模型, 我们使用交替的乘数方向方法来建立我们的算法。 此外, 还要对复杂性和趋同性进行调查, 以进一步验证算法的有效性。 然后通过不同的数据集对拟议方案进行评估。 实验结果可以证实, 拟议的方法优于几种最先进的方法。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
一份简单《图神经网络》教程,28页ppt
专知会员服务
126+阅读 · 2020年8月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
一份简单《图神经网络》教程,28页ppt
专知会员服务
126+阅读 · 2020年8月2日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员