We study how to vertex-sparsify a graph while preserving both the graph's metric and structure. Specifically, we study the Steiner point removal (SPR) problem where we are given a weighted graph $G=(V,E,w)$ and terminal set $V' \subseteq V$ and must compute a weighted minor $G'=(V',E', w')$ of $G$ which approximates $G$'s metric on $V'$. A major open question in the area of metric embeddings is the existence of $O(1)$ multiplicative distortion SPR solutions for every (non-trivial) minor-closed family of graphs. To this end prior work has studied SPR on trees, cactus and outerplanar graphs and showed that in these graphs such a minor exists with $O(1)$ distortion. We give $O(1)$ distortion SPR solutions for series-parallel graphs, extending the frontier of this line of work. The main engine of our approach is a new metric decomposition for series-parallel graphs which we call a hammock decomposition. Roughly, a hammock decomposition is a forest-like structure that preserves certain critical parts of the metric induced by a series-parallel graph.


翻译:具体地说,我们研究的是施泰纳点清除(SPR)问题,我们在这里得到了一个加权的图形$G=(V,E,w)和终端设置$V'=(V,E,w)和subseteq V$,并且必须计算一个加权的微小美元=(V,E,w)$G$,它大约是用V'$衡量的美元。在指标嵌入领域,一个主要的未决问题是每个(非三角)小图表系列都存在1美元多复制扭曲SPR解决方案。为此,我们以前的工作研究了SPR关于树木、cactus和外部平面图,并表明在这些图表中存在这种小的微小与美元(1美元)的扭曲。我们给一美元(1美元)扭曲的SPR解决方案用于系列单面图,扩展了这项工作的前沿。我们方法的主要引擎是,为一系列(非三边形)小图系列图组(非三边)的SPR解决方案。为此,我们研究过前的工作研究过SPR关于树、仙和外图的结构,我们称之为一个关键的图状图状结构。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
148+阅读 · 2021年5月9日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月28日
VIP会员
相关VIP内容
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
148+阅读 · 2021年5月9日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
29+阅读 · 2020年4月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员