We study how to vertex-sparsify a graph while preserving both the graph's metric and structure. Specifically, we study the Steiner point removal (SPR) problem where we are given a weighted graph $G=(V,E,w)$ and terminal set $V' \subseteq V$ and must compute a weighted minor $G'=(V',E', w')$ of $G$ which approximates $G$'s metric on $V'$. A major open question in the area of metric embeddings is the existence of $O(1)$ multiplicative distortion SPR solutions for every (non-trivial) minor-closed family of graphs. To this end prior work has studied SPR on trees, cactus and outerplanar graphs and showed that in these graphs such a minor exists with $O(1)$ distortion. We give $O(1)$ distortion SPR solutions for series-parallel graphs, extending the frontier of this line of work. The main engine of our approach is a new metric decomposition for series-parallel graphs which we call a hammock decomposition. Roughly, a hammock decomposition is a forest-like structure that preserves certain critical parts of the metric induced by a series-parallel graph.
翻译:具体地说,我们研究的是施泰纳点清除(SPR)问题,我们在这里得到了一个加权的图形$G=(V,E,w)和终端设置$V'=(V,E,w)和subseteq V$,并且必须计算一个加权的微小美元=(V,E,w)$G$,它大约是用V'$衡量的美元。在指标嵌入领域,一个主要的未决问题是每个(非三角)小图表系列都存在1美元多复制扭曲SPR解决方案。为此,我们以前的工作研究了SPR关于树木、cactus和外部平面图,并表明在这些图表中存在这种小的微小与美元(1美元)的扭曲。我们给一美元(1美元)扭曲的SPR解决方案用于系列单面图,扩展了这项工作的前沿。我们方法的主要引擎是,为一系列(非三边形)小图系列图组(非三边)的SPR解决方案。为此,我们研究过前的工作研究过SPR关于树、仙和外图的结构,我们称之为一个关键的图状图状结构。