Portfolio optimization is a key challenge in finance with the aim of creating portfolios matching the investors' preference. The target distribution approach relying on the Kullback-Leibler or the $f$-divergence represents one of the most effective forms of achieving this goal. In this paper, we propose to use kernel and optimal transport (KOT) based divergences to tackle the task, which relax the assumptions and the optimization constraints of the previous approaches. In case of the kernel-based maximum mean discrepancy (MMD) we (i) prove the analytic computability of the underlying mean embedding for various target distribution-kernel pairs, (ii) show that such analytic knowledge can lead to faster convergence of MMD estimators, and (iii) extend the results to the unbounded exponential kernel with minimax lower bounds. Numerical experiments demonstrate the improved performance of our KOT estimators both on synthetic and real-world examples.


翻译:证券组合优化是金融方面的一个关键挑战,目的是创造与投资者偏好相符的投资组合。依赖Kullback-Leibel或$f-divegence的目标分配方法是实现这一目标的最有效形式之一。在本文件中,我们提议利用基于内核和最佳运输(KOT)的分歧来完成这项任务,这些分歧放松了先前方法的假设和限制。在基于内核的最大平均差异(MMD)中,我们(i)证明为各种目标分布式核心对子嵌入的基本平均值的可分析性可比较性,(ii)表明这种分析性知识可以加快MMMD估计数字的趋同速度,以及(iii)将结果推广到无限制的指数内核与小型负轴下限。数字实验表明,我们的KOT估计者在合成和现实世界实例上的表现都有所改善。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
4+阅读 · 2020年3月19日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员