Portfolio optimization is a key challenge in finance with the aim of creating portfolios matching the investors' preference. The target distribution approach relying on the Kullback-Leibler or the $f$-divergence represents one of the most effective forms of achieving this goal. In this paper, we propose to use kernel and optimal transport (KOT) based divergences to tackle the task, which relax the assumptions and the optimization constraints of the previous approaches. In case of the kernel-based maximum mean discrepancy (MMD) we (i) prove the analytic computability of the underlying mean embedding for various target distribution-kernel pairs, (ii) show that such analytic knowledge can lead to faster convergence of MMD estimators, and (iii) extend the results to the unbounded exponential kernel with minimax lower bounds. Numerical experiments demonstrate the improved performance of our KOT estimators both on synthetic and real-world examples.
翻译:证券组合优化是金融方面的一个关键挑战,目的是创造与投资者偏好相符的投资组合。依赖Kullback-Leibel或$f-divegence的目标分配方法是实现这一目标的最有效形式之一。在本文件中,我们提议利用基于内核和最佳运输(KOT)的分歧来完成这项任务,这些分歧放松了先前方法的假设和限制。在基于内核的最大平均差异(MMD)中,我们(i)证明为各种目标分布式核心对子嵌入的基本平均值的可分析性可比较性,(ii)表明这种分析性知识可以加快MMMD估计数字的趋同速度,以及(iii)将结果推广到无限制的指数内核与小型负轴下限。数字实验表明,我们的KOT估计者在合成和现实世界实例上的表现都有所改善。