A common misconception is that the Oracle eigenvalue estimator of the covariance matrix yields the best realized portfolio performance. In reality, the Oracle estimator simply modifies the empirical covariance matrix eigenvalues so as to minimize the Frobenius distance between the filtered and the realized covariance matrices. This leads to the best portfolios only when the in-sample eigenvectors coincide with the out-of-sample ones. In all the other cases, the optimal eigenvalue correction can be obtained from the solution of a Quadratic-Programming problem. Solving it shows that the Oracle estimators only yield the best portfolios in the limit of infinite data points per asset and only in stationary systems.
翻译:一个常见的误解是,Oracle egenvalue 估计共变矩阵的Oracle egenvaly 估计值产生最佳的投资组合业绩。 在现实中, Oracle 估计值只是修改实验性共变矩阵 igenvalies, 以尽量减少过滤器与已实现的共变矩阵之间的Frobenius距离。 只有当在沙门类的源代码与抽取器相吻合时, 这才导致最佳的组合。 在所有其他情况下, 最佳的均值校正可以通过解决 Quadratic- programm 问题获得。 解析它表明, Oracle 估计值只有在每个资产无限数据点的限度内才能产生最佳组合, 并且只能在静止系统中产生最佳组合。