Epidemiological forecasts are beset by uncertainties in the generative model for the disease, and the surveillance process through which data are acquired. We present a Bayesian inference methodology that quantifies these uncertainties, for epidemics that are modelled by (possibly) non-stationary, continuous-time, Markov population processes. The efficiency of the method derives from a functional central limit theorem approximation of the likelihood, valid for large populations. We demonstrate the methodology by analysing the early stages of the COVID-19 pandemic in the UK, based on age-structured data for the number of deaths. This includes maximum a posteriori estimates, MCMC sampling of the posterior, computation of the model evidence, and the determination of parameter sensitivities via the Fisher information matrix. Our methodology is implemented in PyRoss, an open-source platform for analysis of epidemiological compartment models.


翻译:流行病学预测被该疾病的基因模型和获取数据的监测过程的不确定性所困扰,我们提出一种贝叶斯推论方法,用(可能)非静止、连续、连续的、Markov人口过程模拟的流行病,对这些不确定性进行量化;该方法的效率来自对大量人口有效的可能性的功能中心限度理论近似值;我们通过分析联合王国COVID-19大流行的早期阶段的方法,根据死亡人数的年龄结构数据,展示了该方法,其中包括事后最大估计、后部生物的MCMC抽样、模型证据的计算以及通过渔业信息矩阵确定参数的敏感性;我们的方法是在PyRos这个用于分析流行病学区模型的开放源平台上实施的。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
72+阅读 · 2020年10月31日
专知会员服务
114+阅读 · 2020年10月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Exact Bayesian inference for level-set Cox processes
Arxiv
0+阅读 · 2020年12月10日
Minimizing Sensitivity to Model Misspecification
Arxiv
0+阅读 · 2020年12月9日
Arxiv
0+阅读 · 2020年12月9日
Arxiv
0+阅读 · 2020年12月8日
VIP会员
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员