Polycrystalline materials, such as metals, are comprised of heterogeneously oriented crystals. Observed crystal orientations are modelled as a sample from an orientation distribution function (ODF), which determines a variety of material properties and is therefore of great interest to practitioners. Observations consist of quaternions, 4-dimensional unit vectors reflecting both orientation and rotation of a single crystal. Thus, an ODF must account for known crystal symmetries as well as satisfy the unit length constraint. A popular method for estimating ODFs non-parametrically is symmetrized kernel density estimation. However, disadvantages of this approach include difficulty in interpreting results quantitatively, as well as in quantifying uncertainty in the ODF. We propose to use a mixture of symmetric Bingham distributions as a flexible parametric ODF model, inferring the number of mixture components, the mixture weights, and scale and location parameters based on crystal orientation data. Furthermore, our Bayesian approach allows for structured uncertainty quantification of the parameters of interest. We discuss details of the sampling methodology and conclude with analyses of various orientation datasets, interpretations of parameters of interest, and comparison with kernel density estimation methods.


翻译:观测由四维、四维单位矢量组成,反映单一晶体的方向和旋转。因此,ODF必须说明已知的晶体对称性,并满足单位长度限制。一种非对称性估计ODFs的流行方法是平衡内核密度估计。然而,这一方法的缺点包括难以从数量上解释结果,以及难以量化ODF的不确定性。我们提议使用一种对称Bingham分布的混合物混合物,作为灵活的ODF模型,推断混合物成分的数量、混合物重量以及基于晶体定向数据的尺度和位置参数。此外,我们采用Bayesian方法,可以对兴趣参数进行结构上的不确定性量化。我们讨论取样方法的细节,并在分析各种定向数据组时作出结论。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
已删除
将门创投
6+阅读 · 2019年7月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关VIP内容
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
已删除
将门创投
6+阅读 · 2019年7月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员