To combat the HIV/AIDS pandemic effectively, certain key populations play a critical role. Examples of such key populations include sex workers, injection drug users, and men who have sex with men. While having accurate estimates for the size of these key populations is important, any attempt to directly contact or count members of these populations is difficult. As a result, indirect methods are used to produce size estimates. Multiple approaches for estimating the size of such populations have been suggested but often give conflicting results. It is therefore necessary to have a principled way to combine and reconcile these results. To this end, we present a Bayesian hierarchical model for estimating the size of key populations that combines multiple estimates and sources of information. The proposed model can make use of multiple years of data and explicitly models the systematic error in the data sources used. We use the model to estimate the size of injection drug users in Ukraine. We evaluate the appropriateness of the model and compare the contribution of each data source to the final estimates.
翻译:为有效防治艾滋病毒/艾滋病流行病,某些关键人群发挥着关键作用,这些关键人群包括性工作者、注射吸毒者和男男性行为者。虽然准确估计这些关键人群的规模很重要,但直接接触或计算这些人群成员的任何尝试都是困难的。因此,采用间接方法来进行规模估计。提出了多种估计这类人群规模的方法,但往往得出相互矛盾的结果。因此,有必要有一个原则性方法来综合并调和这些结果。为此,我们提出了一个巴耶斯等级模型,用以估计关键人群的规模,将多种估计和信息来源结合起来。拟议的模型可以使用多年的数据,并明确模拟所使用的数据源的系统错误。我们使用该模型来估计乌克兰注射吸毒者的规模。我们评估该模型的适宜性,比较每个数据源对最后估计的贡献。