We present a class of efficient parametric closure models for 1D stochastic Burgers equations. Casting it as statistical learning of the flow map, we derive the parametric form by representing the unresolved high wavenumber Fourier modes as functionals of the resolved variables' trajectory. The reduced models are nonlinear autoregression (NAR) time series models, with coefficients estimated from data by least squares. The NAR models can accurately reproduce the energy spectrum, the invariant densities, and the autocorrelations. Taking advantage of the simplicity of the NAR models, we investigate maximal and optimal space-time reduction. Reduction in space dimension is unlimited, and NAR models with two Fourier modes can perform well. The NAR model's stability limits time reduction, with a maximal time step smaller than that of the K-mode Galerkin system. We report a potential criterion for optimal space-time reduction: the NAR models achieve minimal relative error in the energy spectrum at the time step where the K-mode Galerkin system's mean CFL number agrees with the full model's.
翻译:我们为 1D 蒸汽汉堡方程式展示了一组高效的参数封闭模型。 作为流动图的统计学学习, 我们通过将未解决的高波数 Fourier 模式作为溶解变量轨迹的功能来得出参数形式。 降低的模型是非线性自动递减时间序列模型, 其系数根据数据以最小方位估算。 NAR 模型可以准确复制能源频谱、 变化密度和自动化关系。 利用NAR 模型的简单性, 我们调查最大和最佳的空间时间缩减。 空间规模的减少是无限的, 具有两种四元模式的NAR 模型可以很好地运行。 NAR 模型的稳定性限制时间, 最大时间步骤小于 K- mode Galerkin 系统。 我们报告了最佳空间时间缩减的潜在标准: NAR 模型在K- mode Galerkin 系统的平均CFLL 数字与完整模型一致的时阶梯段时, 在能源频谱中实现最小的相对错误。