Multilinear systems play an important role in scientific calculations of practical problems. In this paper, we consider a tensor splitting method with a relaxed Anderson acceleration for solving multilinear systems. The new method preserves nonnegativity for every iterative step and improves the existing ones. Furthermore, the convergence analysis of the proposed method is given. The new algorithm performs effectively for numerical experiments.
翻译:多线性系统在科学计算实际问题方面发挥着重要作用。 在本文中, 我们考虑采用单向分解法, 放松安德森加速解决多线性系统。 新方法为每个迭代步骤保留了非常量性, 并改进了现有步骤。 此外, 对拟议方法进行了趋同分析。 新的算法在数字实验中有效运行 。