In this paper, we examine the use of data from multiple sensing modes, i.e., accelerometry and global navigation satellite system (GNSS), for classifying animal behavior. We extract three new features from the GNSS data, namely, distance from water point, median speed, and median estimated horizontal position error. We combine the information available from the accelerometry and GNSS data via two approaches. The first approach is based on concatenating the features extracted from both sensor data and feeding the concatenated feature vector into a multi-layer perceptron (MLP) classifier. The second approach is based on fusing the posterior probabilities predicted by two MLP classifiers. The input to each classifier is the features extracted from the data of one sensing mode. We evaluate the performance of the developed multimodal animal behavior classification algorithms using two real-world datasets collected via smart cattle collar tags and ear tags. The leave-one-animal-out cross-validation results show that both approaches improve the classification performance appreciably compared with using data of only one sensing mode. This is more notable for the infrequent but important behaviors of walking and drinking. The algorithms developed based on both approaches require little computational and memory resources hence are suitable for implementation on embedded systems of our collar tags and ear tags. However, the multimodal animal behavior classification algorithm based on posterior probability fusion is preferable to the one based on feature concatenation as it delivers better classification accuracy, has less computational and memory complexity, is more robust to sensor data failure, and enjoys better modularity.
翻译:在本文中, 我们检查使用多种感测模式的数据对动物行为进行分类。 我们从GNSS数据中提取三个新特征, 即水点距离、 中速和中位估计水平位置错误。 我们通过两种方法, 综合了从Accelirology和GNSS数据中获得的信息。 第一种方法是将从感测数据中提取的特征混为一体, 并将连接的特性矢量带入一个多层分辨器( MLP) 。 第二种方法是使用两个 MLP 分类者预测的海面稳度概率。 我们从GNSS数据中提取三个新特征, 即从水点距离、 中位速度和中位水平估计水平水平位置差。 我们利用两个通过智能牛圈标签和耳标收集的成熟的动物行为分类算法来评估其性能。 左偏差一- 向更深层分解的高级值分辨结果显示, 与仅使用一种感测模式的数据来改进了分类的准确性概率。 给每个分类者提供更显著的递算方法, 但是, 以一个不甚甚甚甚甚甚甚甚的内值的内值计算方法需要根据一个内值计算, 。