We study reinforcement learning (RL) for text-based games, which are interactive simulations in the context of natural language. While different methods have been developed to represent the environment information and language actions, existing RL agents are not empowered with any reasoning capabilities to deal with textual games. In this work, we aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure. We propose a stacked hierarchical attention mechanism to construct an explicit representation of the reasoning process by exploiting the structure of the knowledge graph. We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
翻译:我们研究基于文字的游戏的强化学习(RL),这是自然语言背景下的互动模拟。虽然已经开发了代表环境信息和语言行动的各种方法,但现有的RL代理商没有处理文字游戏的任何推理能力。在这项工作中,我们的目标是用知识图表进行明确的推理,以便决策,从而产生一个代理商的行动,并以可解释的推理程序作为支持。我们建议一个堆叠的层次关注机制,通过利用知识图表的结构来建立对推理过程的明确表述。我们广泛评价了我们关于一些人为基准游戏的方法,实验结果表明,我们的方法比现有的基于文字的代理商表现得更好。