Large Language Models (LLMs) have achieved impressive performance across various reasoning tasks. However, even state-of-the-art LLMs such as ChatGPT are prone to logical errors during their reasoning processes. Traditional approaches to mitigate these errors involve human or tool-based feedback, such as employing task-specific verifiers or aggregating multiple reasoning paths. These methods, however, either depend heavily on human input or struggle with inconsistent responses. To overcome these limitations, we present RankPrompt, an innovative prompting strategy that empowers LLMs to autonomously rank their responses without needing extra resources. RankPrompt simplifies the ranking challenge into comparative evaluations among different responses, leveraging LLMs' innate ability to generate comparative examples within context. Our experiments across 11 arithmetic and commonsense reasoning tasks show that RankPrompt significantly enhances the reasoning performance of ChatGPT and GPT-4, with improvements of up to 13%. Furthermore, RankPrompt shows exceptional performance in LLM-based automatic evaluations for open-ended tasks, matching human judgments 74% of the time in the AlpacaEval dataset. It also proves to be robust against changes in response order and inconsistency. Overall, our findings endorse RankPrompt as an effective method for extracting high-quality feedback directly from language models.
翻译:暂无翻译