The conditional commitment abilities of mutually transparent computer agents have been studied in previous work on commitment games and program equilibrium. This literature has shown how these abilities can help resolve Prisoner's Dilemmas and other failures of cooperation in complete information settings. But inefficiencies due to private information have been neglected thus far in this literature, despite the fact that these problems are pervasive and might also be addressed by greater mutual transparency. In this work, we introduce a framework for commitment games with a new kind of conditional commitment device, which agents can use to conditionally reveal private information. We prove a folk theorem for this setting that provides sufficient conditions for ex post efficiency, and thus represents a model of ideal cooperation between agents without a third-party mediator. Connecting our framework with the literature on strategic information revelation, we explore cases where conditional revelation can be used to achieve full cooperation while unconditional revelation cannot. Finally, extending previous work on program equilibrium, we develop an implementation of conditional information revelation. We show that this implementation forms program $\epsilon$-Bayesian Nash equilibria corresponding to the Bayesian Nash equilibria of these commitment games.


翻译:在以往关于承诺游戏和程序平衡的工作过程中,已经研究了相互透明的计算机代理人的有条件承诺能力。这些文献表明这些能力如何能帮助解决囚犯的困境以及在完整的信息环境中的其他合作失败。但是,迄今为止,由于私人信息造成的效率低下在文献中一直被忽视,尽管这些问题普遍存在,也可能通过更大的相互透明度加以解决。在这项工作中,我们引入了承诺游戏框架,采用一种新的有条件承诺装置,代理可以用来有条件地披露私人信息。我们证明了这一环境的民俗理论,为事后效率提供了充分的条件,从而代表了代理人之间没有第三方调解人的理想合作模式。将我们的框架与关于战略信息披露的文献联系起来,我们探索了有条件披露可用于实现充分合作而无条件披露无法实现的案例。最后,延长了先前关于方案平衡的工作,我们制定了有条件信息披露的实施。我们展示了与这些承诺游戏的巴伊西亚纳什平衡相关的实施方案 $epsilon$-Bayessian Nash equilibria。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员