We show that it is possible to obtain a linear computational cost FEM-based solver for non-stationary Stokes and Navier-Stokes equations. Our method employs a technique developed by Guermond and Minev, which consists of singular perturbation plus a splitting scheme. While the time-integration schemes are implicit, we use finite elements to discretize the spatial counterparts. At each time-step, we solve a PDE having weak-derivatives in one direction only (which allows for the linear computational cost), at the expense of handling strong second-order derivatives of the previous time step solution, on the right-hand side of these PDEs. This motivates the use of smooth functions such as B-splines. For high Reynolds numbers, some of these PDEs become unstable. To deal robustly with these instabilities, we propose to use a residual minimization technique. We test our method on problems having manufactured solutions, as well as on the cavity flow problem.
翻译:我们显示,对于非静止的斯托克斯和纳维-斯托克斯方程式,有可能获得一个基于FEM的线性计算成本的FEM解算器。我们的方法使用了由Guermond和Minev开发的技术,该技术由单扰动和分裂计划组成。虽然时间整合计划是隐含的,但我们使用有限的元素将空间对应方分开。在每一个时间步骤中,我们解决一个仅向一个方向(允许线性计算成本)的微弱衍生物的PDE,而忽略了在这些PDE的右侧处理前一个时间步骤解决方案的强力二阶衍生物。这促使人们使用光滑的函数,如B-splines。对于高的Reynolds数量,其中一些PDE变得不稳定。为了强有力地处理这些不稳定性,我们建议使用一种残余最小化技术。我们测试我们的方法是如何制造出解决方案的问题,以及电流问题。