In the driving scene, the road participants usually show frequent interaction and intention understanding with the surrounding. Ego-agent (each road participant itself) conducts the prediction of what behavior will be done by other road users all the time and expects a shared and consistent understanding. For instance, we need to predict the next movement of other road users and expect a consistent joint action to avoid unexpected accident. Behavioral Intention Prediction (BIP) is to simulate such a human consideration process and fulfill the beginning time prediction of specific behaviors. It provides an earlier signal promptly than the specific behaviors for whether the surrounding road participants will present specific behavior (crossing, overtaking, and turning, etc.) in near future or not. More and more works in BIP are based on deep learning models to take advantage of big data, and focus on developing effective inference approaches (e.g., explainable inference, cross-modality fusion, and simulation augmentation). Therefore, in this work, we focus on BIP-conditioned prediction tasks, including trajectory prediction, behavior prediction, and accident prediction and explore the differences among various works in this field. Based on this investigation and the findings, we discuss the open problems in behavioral intention prediction and propose future research directions.
翻译:在驾驶场中,道路参与者通常表现出与周围环境的频繁互动和意向理解。Ego-agent(每个道路参与者本身)预测其他道路使用者将经常采取的行为,并期望得到共同和一致的理解。例如,我们需要预测其他道路使用者的下一个移动,并期望采取一致的联合行动以避免意外事故。行为意识预测(BIP)是模拟这种人类考量过程,并完成对具体行为的开始时间预测。它比具体的行为迅速提供比具体行为更早的信号,说明周围道路参与者是否在不久的将来会提出具体的行为(交错、超载和转弯等)。BIP的越来越多的工作基于深度学习模式,以利用大数据,并侧重于制定有效的推论方法(例如,可以解释的推论、跨模式融合和模拟增强)。因此,在这项工作中,我们侧重于BIP规定的预测任务,包括轨迹预测、行为预测和事故预测,并探索该领域各种工作的差异。BIP的越来越多的工作是以深层次学习模式为基础,以利用大数据,并侧重于制定有效的推算方法(例如,可以解释的推算、交叉调和模拟增强能力)。因此,我们在这项工作中,我们讨论了公开的预测和探讨未来的行为方向。