Rank-based linkage is a new tool for summarizing a collection $S$ of objects according to their relationships. These objects are not mapped to vectors, and ``similarity'' between objects need be neither numerical nor symmetrical. All an object needs to do is rank nearby objects by similarity to itself, using a Comparator which is transitive, but need not be consistent with any metric on the whole set. Call this a ranking system on $S$. Rank-based linkage is applied to the $K$-nearest neighbor digraph derived from a ranking system. Computations occur on a 2-dimensional abstract oriented simplicial complex whose faces are among the points, edges, and triangles of the line graph of the undirected $K$-nearest neighbor graph on $S$. In $|S| K^2$ steps it builds an edge-weighted linkage graph $(S, \mathcal{L}, \sigma)$ where $\sigma(\{x, y\})$ is called the in-sway between objects $x$ and $y$. Take $\mathcal{L}_t$ to be the links whose in-sway is at least $t$, and partition $S$ into components of the graph $(S, \mathcal{L}_t)$, for varying $t$. Rank-based linkage is a functor from a category of out-ordered digraphs to a category of partitioned sets, with the practical consequence that augmenting the set of objects in a rank-respectful way gives a fresh clustering which does not ``rip apart`` the previous one. The same holds for single linkage clustering in the metric space context, but not for typical optimization-based methods. Open combinatorial problems are presented in the last section.
翻译:基于 Rank 的链接是按其关系来对一个 $S$ 的天体进行汇总的新工具。 这些天体不是映射给矢量的, 对象之间的“ 相似性” 不需要数字或对称。 所有对象都需要使用一个具有中转性的比较器来将附近的天体排序为相似性, 但与整个集中的任何测量值不相符 。 调用一个以 $S 为基础的等级系统。 基于 的链接被应用到从排序系统产生的 $- 最近的邻居比值 。 这些天体没有被映射为矢量的二维抽象方向的平面复合体, 其面部位在 $x美元 和 $ 的平面图形图中, 以美元 美元 的平面图中, 以美元 美元 的平面图中, 以美元平面的平面图中, 以美元平面的平面图中, 以美元平面平面的平面的平面图中, 以美元平面的平面的平面 。