In this paper, we analyze the spectra of the preconditioned matrices arising from discretized multi-dimensional Riesz spatial fractional diffusion equations. The finite difference method is employed to approximate the multi-dimensional Riesz fractional derivatives, which will generate symmetric positive definite ill-conditioned multi-level Toeplitz matrices. The preconditioned conjugate gradient method with a preconditioner based on the sine transform is employed to solve the resulting linear system. Theoretically, we prove that the spectra of the preconditioned matrices are uniformly bounded in the open interval (1/2,3/2) and thus the preconditioned conjugate gradient method converges linearly. The proposed method can be extended to multi-level Toeplitz matrices generated by functions with zeros of fractional order. Our theoretical results fill in a vacancy in the literature. Numerical examples are presented to demonstrate our new theoretical results in the literature and show the convergence performance of the proposed preconditioner that is better than other existing preconditioners.
翻译:在本文中,我们分析了由分解多维Riesz空间分数扩散方程式产生的先决条件矩阵的光谱。 有限差异法用于接近多维Riesz分衍生物, 它将产生对称正正数绝对条件差的多级托普利茨基质。 使用基于正弦变换的前提条件同梯度法解决由此产生的线性系统。 从理论上讲, 我们证明先决条件矩阵的光谱在开放间隔(1/2/3/2)中统一受约束, 因此, 先决条件的梯度法将线性结合。 提议的方法可以推广到由零分数顺序函数生成的多级托普利茨基质。 我们的理论结果填补了文献中的一个空缺。 提供了数字性实例, 以展示我们在文献中的新理论结果, 并展示拟议的先决条件比其他现有先决条件更好的一致性表现。