Graph Neural Networks (GNNs), originally proposed for node classification, have also motivated many recent works on edge prediction (a.k.a., link prediction). However, existing methods lack elaborate design regarding the distinctions between two tasks that have been frequently overlooked: (i) edges only constitute the topology in the node classification task but can be used as both the topology and the supervisions (i.e., labels) in the edge prediction task; (ii) the node classification makes prediction over each individual node, while the edge prediction is determinated by each pair of nodes. To this end, we propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE). Concretely, we first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision (named as topology edge or supervision edge). We then develop a new message passing mechanism that generates the messages to source nodes (through topology edges) being aware of target nodes (through supervision edges). In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences. In addition, we design a novel negative node-pair sampling trick that efficiently samples 'hard' negative instances in the supervision instances, and can significantly improve the performance. Experimental results verify that the proposed method can significantly outperform existing state-of-the-art models regarding the edge prediction task on multiple homogeneous and heterogeneous graph datasets.
翻译:最初为节点分类而提议的神经网络(GNNs)也激励了许多最近关于边缘预测的工程(a.k.a.a.,链接预测)。然而,现有方法缺乏关于经常被忽略的两项任务区别的精细设计:(一) 边缘仅构成节点分类任务中的地形学,但在边缘预测任务中可以同时用作地形学和监督(即标签),(二) 节点分类对每个节点作出预测,而边缘预测则由每对节点确定。为此,我们提出一个新的边缘预测模式,名为Edge-aware 信件 PassIng neal nEtworks(EMPRIR) 。具体地说,我们首先采用边缘分化技术,指定每种边缘仅用作表层或监督(即表层边缘或监督边缘)的边缘的使用。我们随后开发了一个新的信息传递机制,生成信息到节点(通过表层边缘),了解目标节点(通过监督),我们提出了新的边缘,我们提出了一个新的边缘预测,可以显著的边缘,我们用内脏数据结构显示我们之间的对比差异差异,我们可以进一步测量。