We present LiDARGen, a novel, effective, and controllable generative model that produces realistic LiDAR point cloud sensory readings. Our method leverages the powerful score-matching energy-based model and formulates the point cloud generation process as a stochastic denoising process in the equirectangular view. This model allows us to sample diverse and high-quality point cloud samples with guaranteed physical feasibility and controllability. We validate the effectiveness of our method on the challenging KITTI-360 and NuScenes datasets. The quantitative and qualitative results show that our approach produces more realistic samples than other generative models. Furthermore, LiDARGen can sample point clouds conditioned on inputs without retraining. We demonstrate that our proposed generative model could be directly used to densify LiDAR point clouds. Our code is available at: https://www.zyrianov.org/lidargen/
翻译:我们展示了LiDARGen, 这是一种新颖、有效且可控的基因模型,它能产生现实的LiDAR点云感官读数。我们的方法利用了强大的分比比能源模型,并将点云生成过程设计成在等方形视图中的一种随机分解过程。这个模型使我们得以在有保障的物理可行性和可控性的情况下采样多样性和高质量的点云样本。我们验证了我们在具有挑战性的 KITTI-360 和 Nuscenes 数据集上的方法的有效性。定量和定性结果显示,我们的方法比其他基因模型产生更现实的样本。此外,LiDARGen可以在不经过再培训的情况下采样以输入为条件的点云。我们证明,我们提议的基因模型可以直接用于压缩LIDAR点云。我们的代码可以在https://www.zyrianov.org/lidargen/上查阅。我们使用的代码可以在https://www. zyrianov.org/lidargen/上查阅。